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Abstract: The application of a newly developed diagnostic method to a heli-

copter gearbox is demonstrated. This method is a pattern classifier which uses a

multi-valued influence matrix (MVIM) as its diagnostic model. The method ben-

efits from a fast learning algorithm, based on error feedback, that enables it to

estimate gearbox health from a small set of measurement-fault data. The MVIM

method can also assess the diagnosability of the system and variability of the fault

signatures as the basis to improve fault signatures. This method was tested on

vibration signals reflecting various faults in an OH-58A main rotor transmission

gearbox. The vibration signals were then digitized and processed by a vibration

signal analyzer to enhance and extract various features of the vibration data. The

parameters obtained from this analyzer were utilized to train and test the perfor-

mance of the M_IM method in both detection and diagnosis. The results indicate

that the MVIM method provided excellent detection results when the full range of

faults effects on the measurements were included in training, and it had a correct

diagnostic rate of 95% when the faults were included in training.

Key Words: Detection; diagnosis; helicopter gearbox; pattern classification;

vibration signal processing

Introduction: Helicopter drive trains are significant contributors to both

maintenance cost and flight safety incidents. Drive trains comprise almost 30_ of

maintenance costs and 16% of mechanically related malfunctions that often result

in the loss of aircraft [6]. As such, it is crucial that faults be detected and diagnosed

in-flight so as to prevent loss of lives.

Fault diagnosis of helicopter gearboxes is based primarily on vibration monitoring

and extraction of features that relate to individual gearbox components. Therefore,

considerable effort has been directed toward the development of signal processing

techniques which can quantify such features through the parameters they esti-

mate (e.g., [13,15]). For example, the crest factor of vibration, which represents

1This paper is extracted from References [4] and [51
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the peak-to-rms ratio of vibration, has been shown to increase with localized faults

such as tooth cracks [1]. However, due to the complexity of helicopter gearboxes

and the interaction between their various components, the individual parameters

estimated from vibration measurements do not provide a reliable basis for fault

detection and diagnosis.

As an alternative to single-parameter based diagnosis, fault signatures can be estab-

lished so as to consist of many parameters. For this purpose, pattern classification

techniques need to be employed [9,14]. Among the various pattern classifiers used

for diagnosis, artificial neural nets are the most notable due to their nonparametric

nature (i.e., independence of the probabilistic structure of the system), and their

ability to generate complex decision regions [16]. However, neural nets generally

require extensive training to develop the decision regions. In cases such as heli-

copter gearboxes, where adequate data may not available for training, neural nets

may produce false alarms, undetected faults, and/or misdiagnoses.

In this paper we demonstrate the application of a diagnostic method that can esti-

mate gearbox health based on a small set of measured vibration data. This method

uses nonparametric pattern classification in its model, so like artificial neural nets,

is independent of the probabilistic structure of the system. Moreover, it utilizes a

multi-valued influence matrix (MVIM) as its diagnostic model that provides indices

for diagnosability of the process and variability of the fault signatures [8]. These

indices are used as feedback to improve fault signatures through adaptation [7].

To test this method, vibration signals were collected at NASA Lewis Research

Center as part of a joint NASA/Navy/Army Advanced Lubricants Program to

reflect the effect of various faults in an OH-58A main rotor transmission gearbox.

In order to identify the effect of faults on the vibration data, the vibration signals

obtained from five tests were digitized and processed by a vibration signal analyzer.

The parameters obtained from this signal analyzer were then utilized to train the

MVIM method and test its performance in both detection and diagnosis.

MVIM Method: Measurements .are processed in the MVIM method as

illustrated in Fig. 1: They are usually pre-processed first to obtain a vector of

processed measurements P, then they are converted to binary numbers through

a flagging operation (i.e., abnormal measurements characterized by 1 and normal

ones by 0) to obtain a vector of flagged measurements Y, and finally they are

analyzed through the diagnostic model to produce fault vector X. The MVIM

method is explained in detail in [3] and [7], and its overall concept is briefly

discussed here for completeness.

Fault Signature Representation: Fault signatures in the M'VIM method are
i

represented by the n unit-length columns V1 E 7£" of a multi-valued influence

matrix (MVIM) ._:

,_.-IV1 ... Vj ... V,_ ] (1)

where rn denotes the number of characteristic parameters processed from the raw
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Figure 1: Processing of measurements in the MVIM method.

data, and n represents the number of different fault conditions, including the no-

fault condition.

Diagnostic Reasoning: In the MVIM method, the fault vector X which ranks

the faults according to their possibility of occurrence is defined by the closeness of

the influence vector to the vector of flagged measurements Y (see Fig. 2).

Y(t)

Figure 2: Schematic of diagnostic reasoning in the MVIM method, illus-

trated in three dimensional space.

Fault Signature Evaluation: The influence vectors defined in Eq. (1) are not

known a-priori and need to be estimated. In the MVIM method, the error in

diagnosis is used as the basis to estimate/update the influence vectors. For this

purpose, the fault signatures are updated recursively after the occurrence of each

fault to minimize the sum of the squared diagnostic error associated with that

fault [8].

One of the unique features of the MVIM method is its ability to evaluate quanti-

tatively the uniqueness of the fault signatures as well as their variability, so that

these quantitative measures can be used to improve the flagging operation. In the

MVIM method, the uniqueness of fault signatures is characterized by the closeness

of pairs of influence vectors. For this purpose, a diagnosability matrix is defined



to represent the closenessof the orientation of individual influence vectors [8], and
the index of diagnosability is definedas the smallest off-diagonalcomponent of this
matrix so as to denote the closestpair of fault signatures.

In the MVIM method, the variability of fault signaturesis definedby their variance.
For this purpose, the variancematrix associatedwith ft. is estimated to provide a

measure of the variations of individual components of the influence matrix. Since

in the MVIM method the components of _,, axe adjusted recursively, the variance

matrix can be readily estimated during training [7]. The index of fault signature

variability in the MVIM method is defined as the largest component of a variance

matrix which represents the variability in the components of matrix A,.

Flagging Unit: The influence matrix A is estimated based on the values of

the flagged measurement vector Y. Thus, before the influence matrix is used for

diagnostic reasoning, the integrity of the flagging operation needs to be ensured.

Ideally, the measurements should be flagged such that no false alarms are produced,

all faults are detected, the fault signatures are as spread out as possible, and the

variability of flagged measurements for individual faults is minimized. To this end,

a Flagging Unit is designed so that it can be tuned to achieve the above goals.

The Flagging Unit is tuned iteratively based on a training batch, where at the
end of each iteration the total number of false alarms and undetected faults are

counted and the uniqueness and variability of the fault signatures are obtained from

MVIM. This information is then used as feedback in the next iteration to improve

the performance of the Flagging Unit (see Fig. 3). Training stops when the total

number of false alarms and undetected faults are minimized, and the uniqueness

and repeatability of fault signatures are enhanced [7].

P .._ Flagging
Unit Fault Signature JEstimation

False Alarms
Undetected Faults

Uniqueness Index
Variability Index

Figure 3: Iterative tuning of the Flagging Unit based on feedback from

its diagnostic model.

Experimental: Vibration data was collected at NASA Lewis Research Cen-

ter to reflect the effect of various faults in an OH-58A main rotor transmission

gearbox [11]. The gearbox was tested in the NASA Lewis 500-hp helicopter trans-

mission test stand providing an input torque level of about 3100 in-lbs and an

input speed of 6060 rpm. The configuration of the gearbox is shown in Fig. 4. The

vibration signals were measured by eight piezoelectric accelerometers (frequency

4



rangeof up to 10 kHz), and an FM tape recorder was used to record the signals
periodically once every hour, for about one to two minutes per recording (at the
tape speed of 30 in/sec, providing a bandwidth of 20 kHz). Two chip detectors
were also mounted inside the gearbox to detect the debris causedby component
failures. The location and orientation of the accelerometersare shown in Fig. 5.

Planet Bearing

Planet Gear

Ring Gear

Sun Gear

Mast Ball Bearing

Spiral Bevel Gear

Spiral Bevel Pinion

Triplex Bearing

Gear Roller Bearing
Mast Roller Bearing

Duplex Bearing

Pinion Roller Bearing

Figure 4: Configuration of the OH-58A main rotor transmission gearbox.

During the experiments, the gearbox was disassembled/checked periodically or

when one of the chip detectors indicated a failure. A total of five tests were per-

formed, where each test was run between nine to fifteen days for approximately

four to eight hours a day. Among the eight failures which occurred during these

tests, there were three cases of planet bearing failure, three cases of sun gear failure,

two cases of top housing cover crack, and one case each of spiral bevel pinion, mast

bearing, and planet gear failure (see Table 1). Insofar as fault detection during

these tests, the chip detectors were reliable in detecting failures in which a signifi-

cant mount of debris was generated, such as the planet bearing failures and one

sun gear failure. The remaining failures were detected during routine disassembly

and inspection.

Signal Processing: In order to identify the effect of faults on the vibration

data, the vibration signals obtained from the five tests were digitized and processed

by a commercially available signal analyzer [17]. For analysis purposes, only one

data record per day was used for each test. These data records were taken at the

beginning of the day unless a fault was reported, which in that case, the record

taken right before the fault incident was selected to ensure that the data record



#1, 2, 3 attached to block on right trunnion mount
#4, 6, 7, 8 studded to housing through steel inserts
#5 attached to block on input housing

Left trunnion mount---'_'_

Right trunnion

Trans

Transverse

Longitudinal

Vertical

Longitudinal

Figure 5: Location of the accelerometers on the test stand.

reflected the fault. Also, in order to reduce estimation errors, each data record was

partitioned into sixteen segments and parameters were estimated for each segment

and averaged over these segments. A total of fifty-four parameters were obtained,

of which nineteen parameters were obtained for statistical analysis, baseband power

spectrum analysis, and bearing analysis. The other thirty-five parameters reflected

the various features of signal averaged data (seven parameters for each of the five

gears) [2].

Implementation: As explained earlier, the MVIM method requires a set

of measurements during normal operation and at fault incidents to estimate the

no-fault and fault signatures. The parameters obtained from the signal analyzer

were utilized to evaluate the performance of the M'VIM method, first in detection

and then in diagnosis.



Test # Number of Days

9

Failures

Sun gear tooth spall

Spiral bevel pinion scoring/heavy wear

9 None

13

15

11

Planet bearing inner race spM1

Top cover housing crack

Planet bearing inner race spall

Micropitting on mast bearing

Planet bearing inner race spall

Sun gear tooth pit

Sun gear teeth spalls

Planet gear tooth spall

Top housing cover crack

Table 1: Faults occurred during the experiments.

Fault Detection: The mean values of the nineteen "non-signal averaged" pa-

rameters were used as the components of the measurement vector P (see Fig. 1)

to train and test the MVIM method in detection. Since signal averaging is usually

time consuming and may not be suitable for on-llne detection [12], the thirty-five

"signal averaged" parameters were not utilized for detection. For scaling purposes,

each parameter value was normalized with respect to the value of the parameter

on the first day of each test. Since in the experiments the exact time of fault

was not known, the exact times for the fault incidents of the five tests needed to

be established before the measurements could be used for training and testing the

MVIM. For this purpose, Kohonen'_ feature mapping [10], an unsupervised learning

algorithm, was first used to classify individual parameters into no-fault and fault

cases. The exact time of fault incidents was then established through correlating

these parameters with the faults which had been detected in each test [2]. The

status of various faults during the five tests are shown in Table 2.

The effectiveness of the MVIM method in detection was evaluated with various

training sets. For this purpose, training sets were formed based on parameters

from various combinations of the five tests (see Table 3). The MVIM was tested,

however, based on the parameters from all of the five tests. For each training

case, the MVIM was iteratively trained until perfect detection was achieved within

the training set (i.e., no false alarm or undetected fault was found in the training

set). Note that the MVIM trained for detection contains only two columns, one

representing the no-fault signature and the other representing the fault signature.

The detection results produced by the MVIM for eighteen different cases of training

are shown in Table 3. For comparison, the results obtained from the MVIM method

are contrasted against the results obtained from a multilayer neural net which was

trained and tested under the same conditions. Performance of these detection



Day
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Fault Status

Test #1 Test #3 Test #4 Test #5

XO

:gO

XO

_0

X4

X4

X4

X4

X4, Xl

Test #2

X0 :_0

X0 270

XO X 2

XO 3:2

XO 2;0

2:0 X 0

XO 370

XO 3:0

X 0 2; 3

XO

X2

X2

X6

X0

X0

370

X0

X0

37O

37O

37O

X0

37O

372

372

X0

371

27 1

370

37O

27o

X0

_0

37O

X3

373

X3

X3,371

373,371,375

Table 2: Association of data from each day of the five tests with no-

fault and various fault cases. The no-fault case is denoted as

Xo and the six faults are represented as xl: sun gear failure,

x2: planet bearing failure, x3: housing crack, x4: spiral bevel

pinion failure, xs: planet gear failure, x6: mast bearing failure.

methods are represented by the total number of false alarms and undetected faults

they produced during testing (denoted as "Total Test Errors" in Table 3).

The results in Table 3 indicate that the MVIM was able to provide perfect detection

when faults were fully represented by the training sets (i.e., Cases _10, #11, #13,

#16, #17, and #18), and that it produced better results than the Net in most

of the cases. Specifically, the MVIM produced better results in twelve of the test

cases, produced identical results in five cases, and was outperformed in only one

case. Upon a casual inspection of the training sets that enabled MVIM to perform

perfect detection, it can be observed that Tests #3 and #4 were included in all of

them. This implies that the MVIM needed the parameters from these two tests

to establish an effective pair of signatures for no-fault and fault cases. Note that

without Test #3, the MVIM produced one undetected fault and one false alarm

(Case #15), and without Test #4 it produced one undetected fault (Case #14).

Note that the Net could not provide perfect detection even when trained with all

of the five tests (Case :_18).



Case#

2

3

4

5

6

7

9

10

11

12

13

14

15

16

17

18

Training
Data Sets

1,2

1,3

2,5

3,4

3,5

4,5

1,2,5

1,3,4

2,3,4

2,3,5

1,2,3,4

1,2,3,5

1,2,4,5

1,3,4,5

2,3,4,5

1,2,3,4,5

Diagnostic

Method

Net

MVIM

Net

MVIM

Net

MVIM

Net

MVIM

Net

MVIM

Net

MVIM

Net

MVIM

Net

MVIM

Net

MVIM

Net

MVIM

Net

MVIM

Net

MVIM

Net

MVIM

Net

MVIM

Net

MVIM

Net

MVIM

Net

MVIM

Net

MVIM

Undetected

Faults

1

0

2

0

1

0

False

Alarms

0

0

2

0

0

0

1

0

1

1

0

0

0

0

0

0

Total

Test Errors

4

4

4

0

Table 3: Detection results obtained from MVIM and a multilayer neural

net when trained with different data sets.



Fault Diagnosis: All of the fifty-four parameters obtained from the signal ana-

lyzer were used to train and test the MVIM in diagnosis. The configuration of the

MVIM as applied to fault diagnosis of the OH-58A gearbox is illustrated in Fig. 6.

As shown in this figure, two MVIMs were used for each accelerometer. One MVIM

to perform detection (i.e., to determine whether a fault had occurred or not), and

a diagnostic MVIM to isolate the fault. The detection MVIM contained only two

columns to characterize the no-fault and fault signatures, whereas the diagnostic

MVIM contained seven columns, one characterizing the no-fault signature and the

other six representing the signatures of individual faults (see Table 2). Note that

the two MVIMs can be perceived as filters with different resolutions. Test #3 and

#4 contained most of the failure modes (i.e., four out of six). Therefore, the pa-
rameters from these two tests were used to train the MVIMs. Note that not all of

the failure modes were included in training, so the test results were not expected

to be perfect. For training the detection MVIMs, signal averaged parameters were

excluded because it had already been established that the nineteen non-signal aver-

aged parameters were adequate for detection. For training the diagnostic MVIMs,

however, all of the fifty-four parameters were utilized. A maximum of fifty itera-

tions were used for training both the detection and diagnostic MVIMs.

Yes

Acc #1 Acc #2

\ No Yes - \ No
/

-I Li

Acc #8

• • • • • n

Yes [_N2iagnostic

--1 I

Voting Scheme

A

X

Figure 6: Configuration of the MVIM system as applied to the OH-58A
main rotor transmission.

Individual MVIMs were considered converged when they produced perfect detec-

tion/diagnostics within the training set. The number of epochs for the convergence

of the eight detection MVIMs were: 8, 5, 50, 37, 50, 15, 50, and 50 for accelerom-

eters #1 to #8, respectively, whereas for the eight diagnostic MVIMs they were:

10



50, 1, 2, 2, 50, 50, 50, and 50. Basedon the number of epochsused for individual
MVIMs, it is clear that the detection MVIMs associatedwith accelerometers#3,
#5, #7, and #8 did not achieveperfect detection within the training set. Simi-
larly, the diagnostic MVIMs associatedwith accelerometers#1, #5, #6, #7, and
#8 did not achieveperfect diagnosiswithin the training set.

The performanceof the trained MVIMs werenext evaluatedfor all of the five tests.
For this purpose, the nineteen parameters from each of the eight accelerometers
were first passedthrough the corresponding detection MVIM to reflect the occur-
rence of faults. Once the presenceof a fault was indicated by a detection MVIM,
the set of fifty-four parameters from that accelerometerwas passed through the
correspondingdiagnostic MVIM to isolate the fault. Finally, the diagnostic results
obtained from the eight diagnostic MVIMs were consolidatedby a voting scheme.
This voting schemewas designed based on assigningweights to individual fault
signaturesbasedon their speedof convergencein training, such that larger weights
were assignedto those influence vectors which converged faster and vice versa.
Zero weights wereassignedto the influence vectorswhich did not convergeduring
training; unity weights were assignedto thosewhich convergedwithin oneepoch.

The diagnostic results obtained from the diagnostic system for all of the five tests

are shown in Table 4, with the actual faults indicated inside parentheses. The

results indicate that the MVIM system was able to produce perfect diagnostics for

Tests #3 and #4, on which it was trained, and that it provided a correct diagnostic

rate of 88% for all of the tests. Specifically, the results in Table 4 indicate that

the MVIM system produced two false alarms (on day 4 of Test #1 and day 6 of

Test #5), and five misdiagnoses (on days 5-8 of Test #1 and day 11 of Test #5). In

addition, this system produced equal diagnostic certainty measures for the no-fanlt

case (x0) and sun gear failure (xl) on day 10 of Test #5, and could only diagnose

one of the faults on day 9 of Test #1 and on days 10 and 11 of Test #5. However,

it should be noted that faults x4 and x5 were not included in training, so no fault

signatures were estimated for them. The correct diagnostic rate of MVIM, with

these two faults excluded would be over 95%, which is quite good considering that

the M'VIM system was trained on a small set of measurement-fault data with very

few repetitions of each fault.

Summary of Results: An efficient fault detection/diagnostic system based

on the MVIM method was applied to an OH-58A main rotor transmission gearbox.

Detection results indicate that this system provided perfect detection when the full

range of faults effects were included in training. Diagnostic results indicate that

the system achieved a correct diagnostic rate of 95% despite very few repetitions

of each fault.
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Estimated Fault Status
Test #1 Test #2 Test #3 Test #4 Test #5Day

1
2
3

4

5

6

7

8

9

10

11

12

13

14

15

xo (xo)
xo (xo)
•0 (_o)
•3 (_o)

x3 (_4)
X3 (24)

• _ (_4)
• , (_4,xl)

zo (xo)
•0 (_0)
_0 (xo)
• 0 (_0)
• 0 (_0)
• 0 (_0)
xo (_0)
• 0 (_0)
• 0 (_0)

zo (xo)
zo (zo)
z2 (z2)

• o (zo)
xo (zo)
zo (zo)

• o (xo)
• o (_o)
• o (_o)
• o (_o)
• o (xo)
• o (_o)
• o (_o)
• o (_o)_0

X3

(Xo)

(x3)

• o (_o)
• o (_o)
• o (xo)
• o (_o)
• o (_o)
• _ (_o)
x_ (_)

xo (_o)
x2 (_2)

•6 (_6)

•o (_o)
• _ (x_)
• _ (_)
• o (_o)
• _ (_)
• _ (_)

• o,_ (_,xl)
x_,_ (_,_,,_)

Table 4: Estimated faults for each day of the five tests. The actual faults

(inside parenthesis) are also included for comparison. The xi
are the same as indicated in Table 2.
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